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Dynamic storage function by chaos control in a hybrid bistable system
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Two methods of chaos control in a dynamic storage device which has been realized in an electro-optical
bistable system pumped by a He-Ne laser are proposed. Experimental result agrees with the theoretical simu-
lations and the Lyapunov exponent analysis. Up to 55 bits binary data storage have been successfully demon-
strated.@S1063-651X~98!14502-6#

PACS number~s!: 05.45.1b, 42.65.Sf, 42.79.Vb, 42.65.Pc
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I. INTRODUCTION

Theoretical and experimental studies on delayed feedb
systems have shown the existence of a variety of multista
bifurcated harmonic oscillation modes leading to cha
@1–8#. The potential applicability for large capacity optic
signal storage using this phenomenon has been sugg
@3#. Two methods, seed signal injection and chaotic sea
for coding of the bifurcated harmonic oscillations have be
proposed by Davis and Ikeda@4–6#, and have been studied i
both computer simulation and experiment by Aida and Da
@7–9#. This research gave a concrete image to the useful
of this nonlinear phenomenon. Using the seed signal in
tion method, Gaoet al. have stored binary codes into a
electro-optical bistable system, and storage up to 51 bits
been realized@10#.

The seed signal injection method is the direct, determ
istic selection of a mode by injection of a signal close to
mode. The chaotic search method is an approach that ad
the adaptive parameter of bifurcation to and from the ch
region to a selected mode.

The seed signal injection is limited by its direct selecti
and seed injection in advance when a desirable code nee
be stored into the system, and the chaotic search me
forces system parameters into jumping from one state to
other, which could bring additional influence into the syste

In this paper we present two methods of chaos con
which apply continuous self-controlling feedback into d
namic information storage. Theoretical analyses and c
puter simulation have shown the validity of these metho
Experimental demonstrations will be presented which ag
with the theoretical analyses.

II. TWO METHODS OF CHAOS CONTROL
FOR DYNAMIC STORAGE

Figure 1 shows a schematic diagram of an electro-opt
bistable system. The system considered is composed
light source, modulator, and a feedback loop with large de
time. Its dynamic behavior can be described by the follow
dimensionless equation@10#:

*Electronic address: jygao@mail.jlu.edu.cn
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dV~ t !

dt
52V~ t !1

1

2
I 1$12k cos@V~ t2T!1u#%5 f ~ t !,

~1!

where I 1 and V(t) represent the input and output intensi
levels, andV(t) is proportional to the feedback voltage;T is
the effective delay time in feedback loop,u measures, in
units of the half-wave voltage, the fixed bias applied to t
electro-optical element, andk is the modulation depth of the
device. BothT and the time variablet are scaled to the
natural response time of the hybrid bistable system.

The system could get into chaos via a complicated w
with increasing the bifurcation parameter~for example, input
intensity! as described in Ref.@3#, and we get the bifurcation
diagram of output oscillation levels without chaos control
solving Eq.~1! numerically as shown in Fig. 2. In the bifur
cation region ofm52 in Fig. 2, multistable periodic oscilla
tion solutions coexist, and each has a certain number of
dependent competitive patterns that we called isomers@8#.
We can completely identify a wave form of the~n,m52!
class by assigning 1-bit binary labels 0 or 1 to the peak lev
in a 2T interval, so that different solutions have differe
peak modulation. For example, there are ten types of isom
for the solutions of the~n57,m52! class@8,10#, and their
oscillation wave forms are regular. In the inverse bifurcati
region of m* 52* in Fig. 2, multiple unstable periodic os
cillation solutions coexist too, and each has a certain num
of independent chaotic competitive patterns. For exam
ten types of isomers also coexist for the solutions of
~n57,m* 52* ! class, and their oscillation wave forms a
chaotic. Chaotic itinerancy exists in the inverse bifurcati

FIG. 1. Schematic diagram of an electro-optical bistable syst
M :LiNbO3 crystal modulator;D: detector;A1,A2,A3: amplifier;
B: bias voltage; Osc: oscilloscope; Laser: He-Ne laser sou
Computer: delay and chaos control system.
1611 © 1998 The American Physical Society
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region of m* 52* , for example, where intermittent chaot
mode transitions occur persistently among all the ten isom
of the ~n57,m* 52* ! class, and these isomers will appe
one after another in chaotic itinerancy@9#. From above, we
know that it is possible to make use of coexisting isomers
store complex information as temporal patterns.

In this work, the system operates in the developing c
otic region where it has the solutions of the~n,m* 52* !
class. We adopted two methods of chaos control by cont
ous self-controlling feedback in dynamic storage. One is
layed feedback control,F(t)5X@V(t2T)2V(t)#, that ap-
pears similar to the method proposed by Pyragas
Tamasevicius@11,12#. In the Pyragas method, the delay tim
in the control signal is usually coincident with the period
the target oscillation in the original system, and at the sa
time it was pointed out that the output oscillation can
chaotic or periodic when the delay time in the control sig
differs considerably from the period of the unstable perio
orbits in the Ro¨sser system. In this paper, the delay time us
in the control signal isT, which is just the delay time in
feedback loop of the original system. The other is out
feedback control,F(t)5X@2V(t)#, that was proposed by
Davis@5#. The block diagrams of the two methods are sho
in Fig. 3.

III. ANALYSIS AND SIMULATION
OF THE TWO METHODS

The dynamic equation of the system under chaos con
can be written as

dV~ t !

dt
5 f ~ t !1F~ t !5 HX@V~ t2T!2V~ t !#,

X@2V~ t !#. ~2!

We found that slightly modifying weightX can change
chaos into regularity in the inverse bifurcation region
m* 52* . In order to justify the validity of the two method
in the system under consideration, we carried out an ana
of the first Lyapunov exponent.

FIG. 2. Bifurcation diagram of output oscillation level withou
chaos control. The parameters used arek50.8, u5p, T5100, X
50.0. I 154.985 is the operating point of dynamic memory.PH and
PL are the maximum and the minimum values of higher and low
peak atI 154.985.
rs
r

o

-

u-
-

d

e

l
c
d

t

n

ol

f

is

Let 0,t<T, t5(N21)T1t; then VN(t)5V(t), and
dV(t)/dt'0 with largeT, and Eq.~2! can be approximated
to the following equation:

VN11~t!5
WVN~t!1 1

2 I 1$12k cos@VN~t!1u#%

11X
, ~3!

where W5X when F(t)5X@V(t2T)2V(t)#, or W50
whenF(t)5X@2V(t)#.

Along with the Lyapunov exponent analysis in Ref.@3#,
the first Lyapunov exponent is determined by

l15 max
$0,t<T%

H lim
N→`

1

N (
i 51

N

lnUW1 1
2 I 1k sin@VN~t!1u#

11X
UJ .

~4!

Figure 4 shows the first Lyapunov exponents of the out
oscillation for both cases. It is clear that the first Lyapun

r
FIG. 3. Block diagram of~a! delayed feedback control,F(t)

5X@V(t2T)2V(t)#, and ~b! output feedback control,F(t)
5X@2V(t)#, D is delay system,X is control weight.

FIG. 4. Lyapunov exponent versusI 1 in the inverse bifurcation
region of m* 52* . The parameters used arek50.8, u5p, T
5100. ~1! Without chaos control,X50.0, ~2! with delayed feed-
back control,F(t)5X@V(t2T)2V(t)#, X50.066,~3! with output
feedback control,F(t)5X@2V(t)#, X50.066.
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57 1613DYNAMIC STORAGE FUNCTION BY CHAOS CONTROL . . .
exponents could become negative after chaos control
wide parameter range while they are positive before the c
trol. This indicates that the chaos oscillation in the inve
bifurcation region ofm* 52* is greatly suppressed by th
continuous self-controlling feedback. The comparison
tween curves~2! and ~3! in Fig. 4 shows that the two meth
ods are equally effective for dynamic storage, and the ou
feedback control is simpler than the delayed feedb
method, because it does not require any delayed signal.
only difference between them is that the operating regio
slightly shifted.

The theoretical simulation demonstrates the effectiven
of the two methods for dynamic storage. Figure 5~a! shows
the oscillation wave forms of a code of the seventh harmo
modes before and after the delayed feedback control,
Fig. 5~b! shows the oscillation wave forms of another co
of the seventh harmonic modes before and after the ou
feedback control. It is obvious that the two methods are b
very effective.

Figure 6 is a bifurcation diagram of output oscillatio
when the delayed feedback control was used. It shows

FIG. 5. The computer simulation of dynamic memory by cha
control in the inverse bifurcation region ofm* 52* . The param-
eters used arek50.8,u5p, T5100,I 154.985,X50.05,n57. ~a!
With delayed feedback control,F(t)5X@V(t2T)2V(t)#, ~b! with
output feedback control,F(t)5X@2V(t)#.

FIG. 6. Bifurcation diagram of output oscillation level with de
layed feedback control,F(t)5X@V(t2T)2V(t)#, in the inverse
bifurcation region ofm* 52* . The parameters used arek50.8, u
5p, T5100, X50.0594.I 154.985 is the operating point of dy
namic memory.
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the whole bifurcation diagram was shifted to the right-ha
side comparing with the diagram in Fig. 2 where control w
not used. The operating pointI 154.985, as an example, is i
the bifurcation region ofm52 in Fig. 6, while it was in the
inverse bifurcation region ofm* 52* in Fig. 2. In the calcu-
lation, a very small value of control weightX50.0594 was
used. A similar calculation was done for the output feedba
control, and the results are the same. The above calcula
also show the reason why the two methods used here c
change the chaotic oscillation codes into regular oscillati

IV. EXPERIMENT, RESULTS, AND DISCUSSION

We carried out our experiments in an electro-optic
bistable system shown schematically in Fig. 1. A 3-m
He-Ne laser is used as the input, which is detected b
photomultiplierD after going through a modulatorM made
from LiNbO3. The electric signal fromD is amplified by
three amplifiers and delayed by a computer. The output fe
back signal together with a fixed bias and the control sig
produced by the computer are applied to the modulatorM .
The computer is also used for data input, and the output d
record. The output oscillation of the system is monitored
an oscilloscope.

With the above setup, we measured the open-loop re
ation time of the system by applying a square-wave signa
the system and recording the rise and delay time of the
torted wave form at the modulatorM . The actual delay time
was set to be zero in this measurement, and the natura
sponse time measured ist r50.1160.01 ms. We also timed
the sampling of the computer, and it is 0.03860.001 ms.

The procedure of dynamic storage by chaos control is
follows. As an example, we set the actual delay timeTr to
5.32 ms~the effective delay time isT5Tr /t r548.36!, and
store oscillation code data of the~n57,m52! class by the
computer in aT interval. The peak and valley values in th
code are the same as the corresponding values in
~n51,m52! oscillation wave forms of the system, whic
can be read from the computer before the signal is produ
Then, we close the loop of the system and tune the in
intensity and bias voltage until the system operates in
inverse bifurcation region ofm* 52* . When the system is in
operation, it visits all the ten isomers of the seventh h
monic mode randomly. During this time, the maximum a
the minimum value,PH andPL as shown in Fig. 2, of highe
and lower peaks of output oscillation have been searched
stored by the computer, and we setD5(PH1PL)/2. Then
the average valuePi for each peak~about 20 data! is calcu-
lated and compared withD one by one. IfPi.D, it will be
designated as 1, otherwise it will be designated as 0.
compared the code consisting ofPi series in a period of 4T
with the target code, for example,~10011110110000! as seen
in Fig. 5~b2!. If the code is not the same as the target co
we move to the next code which is beginning from the s
ond peak in the previous code until the code which is
same as the target code is found as seen in Fig. 5~b1!. We
switch on the chaos control and the code is stored into
system. The oscillation code could be erased by switch
the chaos control off. The next selected code could be sto
in the same way.

We demonstrated the two methods described in Sec

s
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experimentally in the inverse bifurcation region ofm* 52*
and the results are shown in Fig. 7. Figures 7~a! and 7~b!
show the coded oscillation wave forms of the~n55,m*
52* ! and~n57,m* 52* ! class using delayed feedback con
trol, and Figs. 7~c! and 7~d! show the coded oscillation wave
forms of the~n59,m* 52* !, ~n511,m* 52* ! class using

FIG. 7. Four examples of experimental results of dynam
memory by chaos control in the inverse bifurcation region ofm*
52* . ~a! and ~b! with the delayed feedback control ofF(t)
5X@V(t2T)2V(t)#, ~c! and ~d! with the output feedback control
of F(t)5X@2V(t)#. The parameters used are~a! Tr53.99 ms,n
55, ~b! Tr55.32 ms, n57, ~c! Tr56.84 ms, n59, ~d! Tr

58.36 ms,n511.
i,

,

output feedback control, where both the chaotic and
steady oscillation wave forms are shown for comparison
is clear to see that these experimental results agree with
oretical simulations. Up to 55 harmonic modes~n555, m*
52* ! have been demonstrated in our system as show
Fig. 8, but it is difficult for the system to operate in eve
higher harmonic mode because of the instability limitati
from the laser source and the amplifiers used.

In conclusion, we have stabilized the chaotic code os
lation to a desired stable code oscillation successfully by
two methods proposed, delayed feedback control and ou
feedback control, and up to 55 harmonic modes have b
reached.
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FIG. 8. Another example of experimental results of dynam
memory with the output feedback control ofF(t)5X@2V(t)# in
the inverse bifurcation region ofm* 52* . The parameters used ar
Tr541.80 ms,n555.
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